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Abstract

We first apply Connes’ noncommutative geometry to a finite point set. The explicit form of the
action functional ofU (1) gauge field on thiz-point set is obtained. We then construct tiél)
gauge theory on a disconnected manifold consisting adpies of a given manifold. In this case,
the explicit action functional ot/ (1) gauge field is also obtained. © 2002 Elsevier Science B.V.
All rights reserved.
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1. Introduction

Within the framework of Connes’ noncommutative geomgtr2] (for the brief introduc-
tion, see als¢B3-5]), the Higgs field and the symmetry breaking mechanism in the standard
model have a remarkable geometrical picture. The Higgs field is a connection, which arises
from the geometry of the two-point §&,7], see als¢4,8—15] and references therein. This
suggests that the discrete geometry may play an important role in physics. Differential cal-
culus and gauge theory on discrete groups were proposed by Sifa6?,isee als¢17-21]
The differential calculus on arbitrary finite or countable sets was formulated by Dimakis and
Muller-Hoissen in22,23] Especially, the generalizéd(1) gauge theory above a discrete
space withs points ¢ > 2), was briefly discussed by Cammarata and Coquered@4jn
For related developments, s&—28]and references therein. For the metric properties of
a finite set, sef29] and references therein.
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In Connes’ noncommutative geometry, all the geometrical data are determined by a
spectral triple(A, H, D), where A is an involutive algebra} is a Hilbert space with an
involutive representation of A, andD is a self-adjoint operator acting 6.

In this paper, we first review the differential calculus on-point set{22—24] We then
apply Connes’ spectral triple to this formalism to obtain the explicit form of the action
functional of U (1) gauge field on the-point set. Finally, we construct thé (1) gauge
theory on a disconnected manifold consistingratopies of a connected manifold. The
explicit action functional in this case is also obtained.

2. Differential calculuson n-point set

In this section, we shall review the differential calculus:epoint set. More detailed
account of the construction can be founda2-24]

Let M be a set ofi pointsiy, ..., i, (n < c0), and.A an involutive algebra of complex
functions onM with (fg)(i) = f(i)g(@@). Let p; € A defined by
pi(j) = 8. 1)
Then it follows that
p*=p.  pipj=8ipj. P pi=1 (2)

wherel(i) = 1. In other wordsp; is a projector ind. Eachf € A can be written as

f=Y_rop, €)

where f(i) € C is a complex number. The algebyh can be extended to a universal
differential algebra2(A) = @22 ;82" (A) (where22(A) = A) via the action of a linear
operator d 2" (A) — 2"11(A) satisfying

dl1 =0, d® =0, d(w,0) = (dw)o’ + (—1) o, do’,

wherew, € 2" (A). The space®’ (A) of r-forms ared-bimoduleslis taken to be the unit
in £2(A). From the above properties, the set of functipnpsatisfy the following relations:

pidpj = —(dp;)p; + &jdp;, (4)

> _dpi=0. (5)

This means that the differential calculus ouepoint setM associates with it — 1 linear

independent differentials. There is a natural geometrical representation associat&t with

Let the projectorg; (i =1, ..., n) be the orthonormal base vectors in the Euclidean space

R". ThenM forms the vertices of th@ — 1)-dimensional hypertetrahedron embeddd®'in
£2(A) is made an involutive algebra by

(aoday - - -day)* = day, - - - daj ag, (6)
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whereag, ay, .. ., a, € A. Thus we have** = w and(wn)* = n*w* forw, n € 2(A), as
required. Notice that if € £21, then(da)* = —da*.

The universal first-order differential calculud! is generated by; dp;Gi # j), i,
Jj=1,2,...,n. Notice thatp; dp; is the linear combinations qf; dp; (i # j).

21 can be defined as the kernel in the algedr® A of the multiplication map. The
dimension of21 is, therefore, diid ® A) —dimA = n(n — 1).

Similarly, the compositions op; dp; (i # j),i,j = 1,2,...,n, generate the higher
order universal differential calculus ad. For example, the universal second-order differ-
ential calculus2? is generated by; dp;pidpi(i # j,j#k),i, j,k=12,...,n.

Notice that it is much simpler to say th&X? is generated by, dp;dpe( # j,j #k
andi, j,k =1,2,...,n). But the formp; dp; p; dpx is more convenient for us to apply
the spectral triple t@2 (A).

Since 2? = 21 @4 --- @4 21 (p terms), therefore the dimension &2? is
nP(n — 1)1’/n/’_l =nn — 1)P.

A simple calculation shows that

dpi =Y (pjdpi — pidp)). (7
J
Furthermore,
dpidp; = Z(Pk dpi pidp; — pidpi prdpj + pidp; pjdpy). (8)

k

Any 1-form« can be written ag = Zi’j aijpi dp; with jj € C andejj = 0. Especially,
a*=—3 a&;;pidp;. Thena* = —a if and only if &ji = «j.

One can find
dor = > (ajk — aik + aij) pi dp; pj dpy. 9)
i,j.k

In this paper, we only consider tli&(1) gauge fieldx on M, i.e.,a is a connection oM,
« is a 1-form, and skew-adjoin, = —«, i.e.,&j; = «jj. « obeys the usual transformation
rule,

o =uou™ + udu*.

Hereu = ), u(i)p; € A, andu(i) € U(1), the Abelian unitary group. In order to make
the formulae concise, one introduces

a=7) ajpidp; =) (1+aj)p;dp; (10)
iJ

i,j
with gjj = 1. One then has
a’ = uau*, ai/j = u(i)ajju(j)*. (11)
The curvature of the connectianis given by

6 = da + o2,
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and transforms in the usual wa&#,= u6u*. Notice thatde)* = —da*=da and(a?)*=a?,
therefore one has = 6*. As a 2-form,0 can be written as

0= Z Bijkpi dp;j pj dpx, Gijk = aijajk — aik. (12)
i,j,k

3. From spectral tripleto action functional over M

The availability of the spectral triple allows us to project from the algebra of universal
forms £2 (A) to a more useful graded differential algebra.

We now construct the spectral triplel, H, D) over then-point setM [30]. In this case,
Ais the algebra oM defined in the last section. Without loss of generalitys taken to be
an-dimensional linear space ov€y i.e., H is just the direct suri{ = &!_,H;, H; = C.

The action of4 onH is given by

f 0 ... 0
n=| 2 I 0]
0 0 ... f

where f € A. ThenD is the Hermitiam x n matrix with element®;; = Dji, andDjjis a
linear mapping fron¥; to ;. The following equality defines an involutive representation
of 2(A) inH,

m(agday - - -day) = i"mw(ao)[ D, w(a1)] - - - [D, 7w (an)], (13)
whereag, a1, ..., a, € A. To ensure the differential d satisfies
d? =0, (14)

one has to impose the following condition én
D? = I, (15)

wherep is a real constant anfithen x n unit matrix.

We now takeDjj # 0(i # j). Then the representation : £2(A) — L(H) is injective
on £2(A). One can prove that homomorphism is a differential one, i.&.(£2(A)) is well
defined.

In Connes’ terminology2], our spectral triple(A, #, D) is odd (except the case of
n=2).

The projectorp; can be expressed as the« n matrix,

(T (Pi))ap = 0aibpi- (16)

Notice that the diagonal elementsBfcommute exactly with the action of. For the sake
of convenience, we can ignore the diagonal element3,afe.,

D;i = 0. a7
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From(13) and (16)one has
((pidpj)ag = idaidp; Dij, (18)
(m(pidp;j pj dpr px dpi prdpr))ap = 8aidpr Dij Dik Dy Dir. (19)
One can define an inner produ¢tin 7 (£2 (A)) by setting
(a|B) =tr(a™B).

Then the action functional of the curvatutrés

S =Ilm @)% = (x(6) |7 (6)) = tr(z(©))*. (20)
From(12), (19) and (2Q)we have
S=Y" ijkbi Dij DixDia D (21)
i.j.kil
Denote
aijDij = Hij, (22)

whereg;j is defined in(10). ThenH = (Hjj) is a Hermitian matrix with

Hii = 0. (23)
From(12), (15), (21), —(23)one thus has

S =tr H* — 2 tr H? + nu*. (24)

From(23), the eigenvalues; (i =1, 2, ..., n) of H satisfy:

n
Y ai=o0. (25)
i=1
Eq. (24)can be written as the following:
n n
S:ZA?—ZMZZA?—Fnu‘l. (26)
i=1 i=1

From the quadric expressiof26) can take the form

n—1 n—1
ijki
§= CZJ E vivjore — C1 E o7 +nut,
i\ j k=1 i=1

where(g1, ..., p,—1) is a vector in(n — 1)-dimensional Euclidean spa&¥ 1, C'ij' and
C1 are real constants.
For the sake of convenience, we identf}~1 with a subspace embedded in the
dimensional geometrical representation spac& dhtroduced inSection 2from now on.
In the (n — 1)-dimensional rectangular coordinate system, the reference point is taken to
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be the center of thé: — 1)-dimensional hypertetrahedraod. can then be represented by a
set ofn vectors inR"~1: e (e=1...,n7i=1...,n—1),suchthat

n 1
Seref = — 15“5 -— (27)
i

In (27) we have chosen the normalization of the vectors to be unity for convenience. This
set ofe’s satisfy

> e =0, (28)
o
n
Zef‘e‘}[ = n_—18” (29)
o

It should be mentioned that the propertiegphre encoded in those of the set of spin states
in the Potts mod€B1]. The reason will be discussed at the end of this section.
Using(28), the eigenvalues ofl are

n—1
Aa:quief‘, a=1,...,n. (30)
i=1

Here eacly; i = 1,...,n — 1) is areal parameter. We call = (¢4, ..., ¢,—1) the order
parameter field ilR”~1. Finally, from(24), (29) and (3Q)we obtain the explicit form of
over then-point setM:

= (Z efedefef ) $ihj Pt — —u (Z¢> ) +npt. (31)

i,j,k,l

Remark.

1) The gauge field is a x n matrix. Meanwhile, the number of the reduced field variables
¢; isn — 1. Notice also thap; (i =1, 2,...,n — 1) are real numbers.
2) Whenn = 2, (31) changes into

S = 2(¢? — u?>. (32)

This is just the Hamiltonian density of the Landau phenomenological theory of phase
transitions below the critical temperatyB2]. Here¢ is known as the order parameter.
Notice that the size of the coefficientsgt and¢* does not affect the values of critical
exponents of phase transitions, but it may affect the mass value of the Higgs field when
(32) is considered as the Higgs potential: Fr¢is), (22) and (3Q)we havegp? =
w?lai2|?. One then has

S =2u*(la12? — D2, (33)

which is the form of Connes’ version of Higgs potential.
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3) Eg. (32)is contained in the potential energy density of the continuous-spin formulation
of the Ising model (see for examp]@3,34). Notice that the Ising model is just the
2-state Potts model. In generél) is contained in the potential energy density of the
continuous-spin formulation of the state Potts mod¢B1]. Since the set of states of the
Potts model forms a-point set, one then can build(1) gauge theory on thig-point
set.

4. Action functional on n copies of a manifold

Let V be an oriented smooth manifold an, as the previous sectionssapoint set.
ThenV x M is a disconnected manifold consistingmotopies ofV. Now we construct
theU (1) gauge field theory oY x M. Letg be a complex function ol x M. Just as in
Section 2it can be written as

g=> gpi (34)

Notice that this time; (i) is a complex function ovev;, theith copy ofV.

The algebra that we use will be the tensor product of the De Rham compléand of
the universal differential algebra of the finite point 8&t

Denote the differential oM by d. In other words, The differential d iBections 2 and 3
is replaced by d Let d; be the usual differential oW, and d the total differential ol x M.
One then has

d = ds+ ck. (35)
The nilpotency of d requires that
dsdf = —d ds. (36)

Differentiating(41), we have
dg =) (dsg(@)pi + ) g()d p;.

Any 1-forma can be written as

a=> aipithkpj+ Y aipi (37)
ij i

with «jj, @ complex function oV anda;jj = 0; ;, a 1-form onV;.
Now we consider a connectianoverV x M, « is a 1-form and skew-adjoint, i.ex,is
given by(37)anda™ = —«. o 0beys the usual transformation rule,

o =uou™ + udu*.

Hereu = ), u(i)p; € A, andu(i) € U(1), the Abelian unitary group oW;. « is thus



L. Hu, A.S. Sant’ Anna/ Journal of Geometry and Physics 42 (2002) 296-306 303

called theU (1) gauge field or¥V x M. One then finds

do = Z(dsaij)l’i d pj + Z(Oljk —aik + aij)pi & pjp; G px
i,j i,j,k

+) (@sai)pi — Y _ i ck pi,

o® =" aijejkpi o pjpj Ok pr + Y aij(ei —aj)pi ok pj.
i,j.k i,j

Notice thatw? = o; A o; = 0.
As in Sections 2 and,3ve introduce

a=Y ajpitpj=Y (1+ajpidpj.
iJ iJ
The U (1) gauge transformation rule faris
a’ = uau®,

i.e.,ai’j = u(D)aiju(j)*.
o; obeys the usudl (1) gauge transformation rule,

o = o +u(i)du@i)*.
The curvature of the connectianis given by
O = da + o2

It can be seen tha® transforms in the usual waf®)’ = u®u*. As a 2-form,® can be
written as

O = (dsay)pi + Y _(ds+ ;i — o j)aijpi & pj + Y _ ijpi o pjp; c pr.
i i,j i,j,k
Bijk = aijajk — aik- (38)

We see tha® has a usual differential degree and a finite-difference de@reg) adding
up to 2. Let us begin with the term @ of bi-degree(2, 0):

0?9 =% "(dsai)pi, (39)

it is the continuous part of the field strength.
Next, we look at the component™V of bi-degree(1, 1):

et — Z(ds+ o —aj)aijpi & p;. (40)
iJ

©&D corresponds to the interaction betwegrand M. It also obeys the field strength
transformation rule@’@D = ;@D y*,
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Finally, we have the compone@t®? of degreg(0, 2):

©©2 =" 6ipi & p;p; ok pr. (41)
i,j.k

©©2 corresponds to the field strength over the finite/det
Just as irSection 3 we use the formul§l3) to deal with the finite-difference degrees,
ie.,

(G pi) =i[D, w(pi)].
We also introduce the Hermitian matrix,
Hij = aij Djj.

We then obtain the action functional ovE€rx M:

S=/£dv.
1%

The Lagrangian density is given by the following formulae:

L= Lo+ L1+ Lo, (42)
Ly =10%0)> = "|dsai?, (43)
Ly=[0®V)2 = Z[(ds+a, o)) Hij][(ds + aj — ;) Hil. (44)

Lo =tr H* — 247 trH2~|—n,u

=3 (Ze“ "‘e,‘i‘e?‘) b b — —u (Z¢> ) +nut. (45)

i,j,k,l

Remark. The term.; is the usual term describing the Lagrangian fav @) x U (1) x
- x U(1) (n terms) connectiond;; (i # j,i, j =1,2,...,n)in £ give a mass to some
of thew; — «; fields.
Example 1. We first consider the simplest case, i.e.,
a=A, i=12...,n

HereA is aU (1) gauge field orV. The physical meaning of the above assumptions is: there
exists unique gauge field, i.e., the Maxwell electromagnetic field over all copiés of
The Lagrangian density is given by the following formulae:

Lo =032 = n|F|? = n|ds A%,
n
Lr=100VP = (s ) = —— ) (dsg)",
l

andLy is the same as the formu(a5).
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Notice that£; coincides with the kinetic energy density of the continuous-spin formula-
tion of then-state Potts modé¢B1].

Example 2. We consider the case af = 3. The Lagrangian density is given by the
following formulae:

the massless term
2 2 2
Lo = |dsa1|” + [dsoro|” + |ds 3],
the nontrivial mass term

L1 = 2[(ds+ a1 — a2) H12][ (ds + a2 — 1) Ho1]
+2[(ds + a1 — a3) H13][ (ds + a3 — 1) H31]
+2[(ds + a2 — a3) Hp3][ (ds + a3 — a2) H3],

and the Higgs—Landau polynomial

Lo= 2% + ¢3)? — 3u(¢? + ¢2) + 3u™.
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