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Abstract

We first apply Connes’ noncommutative geometry to a finite point set. The explicit form of the
action functional ofU(1) gauge field on thisn-point set is obtained. We then construct theU(1)

gauge theory on a disconnected manifold consisting ofn copies of a given manifold. In this case,
the explicit action functional ofU(1) gauge field is also obtained. © 2002 Elsevier Science B.V.
All rights reserved.
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1. Introduction

Within the framework of Connes’ noncommutative geometry[1,2] (for the brief introduc-
tion, see also[3–5]), the Higgs field and the symmetry breaking mechanism in the standard
model have a remarkable geometrical picture. The Higgs field is a connection, which arises
from the geometry of the two-point set[6,7], see also[4,8–15], and references therein. This
suggests that the discrete geometry may play an important role in physics. Differential cal-
culus and gauge theory on discrete groups were proposed by Sitarz in[16], see also[17–21].
The differential calculus on arbitrary finite or countable sets was formulated by Dimakis and
Müller-Hoissen in[22,23]. Especially, the generalizedU(1) gauge theory above a discrete
space withn points (n > 2), was briefly discussed by Cammarata and Coquereaux in[24].
For related developments, see[25–28]and references therein. For the metric properties of
a finite set, see[29] and references therein.
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In Connes’ noncommutative geometry, all the geometrical data are determined by a
spectral triple(A,H, D), whereA is an involutive algebra,H is a Hilbert space with an
involutive representationπ of A, andD is a self-adjoint operator acting onH.

In this paper, we first review the differential calculus on an-point set[22–24]. We then
apply Connes’ spectral triple to this formalism to obtain the explicit form of the action
functional ofU(1) gauge field on then-point set. Finally, we construct theU(1) gauge
theory on a disconnected manifold consisting ofn copies of a connected manifold. The
explicit action functional in this case is also obtained.

2. Differential calculus on n-point set

In this section, we shall review the differential calculus onn-point set. More detailed
account of the construction can be found in[22–24].

Let M be a set ofn pointsi1, . . . , in (n < ∞), andA an involutive algebra of complex
functions onM with (fg)(i) = f (i)g(i). Let pi ∈ A defined by

pi(j) = δij. (1)

Then it follows that

p∗ = p, pipj = δijpj ,
∑

i

pi = 1, (2)

where1(i) = 1. In other words,pi is a projector inA. Eachf ∈ A can be written as

f =
∑

i

f (i)pi, (3)

wheref (i) ∈ C is a complex number. The algebraA can be extended to a universal
differential algebraΩ(A) = ⊕∞

r=0Ωr(A) (whereΩ0(A) = A) via the action of a linear
operator d :Ωr(A) → Ωr+1(A) satisfying

d1 = 0, d2 = 0, d(ωrω′) = (dωr)ω′ + (−1)rωr dω′,

whereωr ∈ Ωr(A). The spacesΩr(A) of r-forms areA-bimodules.1 is taken to be the unit
in Ω(A). From the above properties, the set of functionspi satisfy the following relations:

pi dpj = −(dpi)pj + δij dpi, (4)∑
i

dpi = 0. (5)

This means that the differential calculus overn-point setM associates with itn − 1 linear
independent differentials. There is a natural geometrical representation associated withM.
Let the projectorspi (i = 1, . . . , n) be the orthonormal base vectors in the Euclidean space
Rn. ThenM forms the vertices of the(n−1)-dimensional hypertetrahedron embedded inRn.

Ω(A) is made an involutive algebra by

(a0 da1 · · · dan)∗ = da∗
n · · · da∗

1 a∗
0, (6)
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wherea0, a1, . . . , an ∈ A. Thus we haveω∗∗ = ω and(ωη)∗ = η∗ω∗ for ω, η ∈ Ω(A), as
required. Notice that ifα ∈ Ω1, then(dα)∗ = −dα∗.

The universal first-order differential calculusΩ1 is generated bypi dpj (i �= j), i,

j = 1, 2, . . . , n. Notice thatpi dpi is the linear combinations ofpi dpj (i �= j).
Ω1 can be defined as the kernel in the algebraA ⊗ A of the multiplication map. The

dimension ofΩ1 is, therefore, dim(A ⊗ A) − dimA = n(n − 1).
Similarly, the compositions ofpi dpj (i �= j), i, j = 1, 2, . . . , n, generate the higher

order universal differential calculus onM. For example, the universal second-order differ-
ential calculusΩ2 is generated bypi dpj pj dpk(i �= j, j �= k), i, j, k = 1, 2, . . . , n.

Notice that it is much simpler to say thatΩ2 is generated bypi dpj dpk(i �= j, j �= k

andi, j, k = 1, 2, . . . , n). But the formpi dpj pj dpk is more convenient for us to apply
the spectral triple toΩ(A).

Since Ωp = Ω1 ⊗A · · · ⊗A Ω1 (p terms), therefore the dimension ofΩp is
np(n − 1)p/np−1 = n(n − 1)p.

A simple calculation shows that

dpi =
∑

j

(pj dpi − pi dpj ). (7)

Furthermore,

dpi dpj =
∑

k

(pk dpi pi dpj − pi dpk pk dpj + pi dpj pj dpk). (8)

Any 1-form α can be written asα = ∑
i,j αijpi dpj with αij ∈ C andαii = 0. Especially,

α∗ = −∑i,j ᾱj,ipi dpj . Thenα∗ = −α if and only if ᾱji = αij.
One can find

dα =
∑
i,j,k

(αjk − αik + αij)pi dpj pj dpk. (9)

In this paper, we only consider theU(1) gauge fieldα on M, i.e.,α is a connection onM,
α is a 1-form, and skew-adjoint,α∗ = −α, i.e.,ᾱji = αij. α obeys the usual transformation
rule,

α′ = uαu∗ + u du∗.

Hereu = ∑
i u(i)pi ∈ A, andu(i) ∈ U(1), the Abelian unitary group. In order to make

the formulae concise, one introduces

a =
∑
i,j

aijpi dpj =
∑
i,j

(1 + αij)pi dpj (10)

with aii = 1. One then has

a′ = uau∗, a′
ij = u(i)aiju(j)∗. (11)

The curvature of the connectionα is given by

θ = dα + α2,
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and transforms in the usual way,θ ′ = uθu∗. Notice that(dα)∗ = −dα∗=dα and(α2)∗=α2,
therefore one hasθ = θ∗. As a 2-form,θ can be written as

θ =
∑
i,j,k

θijkpi dpj pj dpk, θijk = aijajk − aik. (12)

3. From spectral triple to action functional over M

The availability of the spectral triple allows us to project from the algebra of universal
formsΩ(A) to a more useful graded differential algebra.

We now construct the spectral triple(A,H, D) over then-point setM [30]. In this case,
A is the algebra onM defined in the last section. Without loss of generality,H is taken to be
a n-dimensional linear space overC, i.e.,H is just the direct sumH = ⊕n

i=1Hi ,Hi = C.
The action ofA onH is given by

π(f ) =




f (1) 0 . . . 0
0 f (2) . . . 0

. . . . . . . . . . . .

0 0 . . . f (n)


 ,

wheref ∈ A. ThenD is the Hermitiann × n matrix with elementsDij = D̄ji, andDij is a
linear mapping fromHj toHi . The following equality defines an involutive representation
of Ω(A) inH,

π(a0 da1 · · · dan) = inπ(a0)[D, π(a1)] · · · [D, π(an)], (13)

wherea0, a1, . . . , an ∈ A. To ensure the differential d satisfies

d2 = 0, (14)

one has to impose the following condition onD,

D2 = µ2I, (15)

whereµ is a real constant andI then × n unit matrix.
We now takeDij �= 0 (i �= j). Then the representationπ : Ω(A) → L(H) is injective

onΩ(A). One can prove thatπ homomorphism is a differential one, i.e.,π(Ω(A)) is well
defined.

In Connes’ terminology[2], our spectral triple(A,H, D) is odd (except the case of
n = 2).

The projectorpi can be expressed as then × n matrix,

(π(pi))αβ = δαiδβi . (16)

Notice that the diagonal elements ofD commute exactly with the action ofA. For the sake
of convenience, we can ignore the diagonal elements ofD, i.e.,

Dii = 0. (17)



300 L. Hu, A.S. Sant’Anna / Journal of Geometry and Physics 42 (2002) 296–306

From(13) and (16), one has

(π(pi dpj ))αβ = iδαiδβj Dij, (18)

(π(pi dpj pj dpk pk dpl pl dpr))αβ = δαiδβrDijDjkDklDlr. (19)

One can define an inner product〈|〉 in π(Ω(A)) by setting

〈α|β〉 = tr(α∗β).

Then the action functional of the curvatureθ is

S = ‖π(θ)‖2 = 〈π(θ)|π(θ)〉 = tr(π(θ))2. (20)

From(12), (19) and (20), we have

S =
∑

i,j,k,l

θijkθkliDijDjkDklDli. (21)

Denote

aijDij = Hij, (22)

whereaij is defined in(10). ThenH = (Hij) is a Hermitian matrix with

Hii = 0. (23)

From(12), (15), (21), –(23), one thus has

S = tr H 4 − 2µ2 tr H 2 + nµ4. (24)

From(23), the eigenvaluesλi (i = 1, 2, . . . , n) of H satisfy:
n∑

i=1

λi = 0. (25)

Eq. (24)can be written as the following:

S =
n∑

i=1

λ4
i − 2µ2

n∑
i=1

λ2
i + nµ4. (26)

From the quadric expression,(26)can take the form

S = C
ijkl
2

n−1∑
i,j,k,l=1

ϕiϕj ϕkϕl − C1

n−1∑
i=1

ϕ2
i + nµ4,

where(ϕ1, . . . , ϕn−1) is a vector in(n − 1)-dimensional Euclidean spaceRn−1, C
ijkl
2 and

C1 are real constants.
For the sake of convenience, we identifyRn−1 with a subspace embedded in then-

dimensional geometrical representation space ofM introduced inSection 2from now on.
In the (n − 1)-dimensional rectangular coordinate system, the reference point is taken to
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be the center of the(n − 1)-dimensional hypertetrahedron.M can then be represented by a
set ofn vectors inRn−1: eα

i (α = 1, . . . , n; i = 1, . . . , n − 1), such that

∑
i

eα
i e

β
i = n

n − 1
δαβ − 1

n − 1
. (27)

In (27) we have chosen the normalization of the vectors to be unity for convenience. This
set ofe’s satisfy∑

α

eα
i = 0, (28)

∑
α

eα
i eα

j = n

n − 1
δij. (29)

It should be mentioned that the properties ofM are encoded in those of the set of spin states
in the Potts model[31]. The reason will be discussed at the end of this section.

Using(28), the eigenvalues ofH are

λα =
n−1∑
i=1

φie
α
i , α = 1, . . . , n. (30)

Here eachφi (i = 1, . . . , n − 1) is a real parameter. We call� = (φ1, . . . , φn−1) the order
parameter field inRn−1. Finally, from(24), (29) and (30), we obtain the explicit form ofS
over then-point setM:

S =
∑

i,j,k,l

(∑
α

eα
i eα

j eα
k eα

l

)
φiφj φkφl − 2n

n − 1
µ2

(∑
i

φ2
i

)
+ nµ4. (31)

Remark.

1) The gauge field is an × n matrix. Meanwhile, the number of the reduced field variables
φi is n − 1. Notice also thatφi (i = 1, 2, . . . , n − 1) are real numbers.

2) Whenn = 2, (31)changes into

S = 2(φ2 − µ2)2. (32)

This is just the Hamiltonian density of the Landau phenomenological theory of phase
transitions below the critical temperature[32]. Hereφ is known as the order parameter.
Notice that the size of the coefficients ofφ2 andφ4 does not affect the values of critical
exponents of phase transitions, but it may affect the mass value of the Higgs field when
(32) is considered as the Higgs potential: From(15), (22) and (30), we haveφ2 =
µ2|a12|2. One then has

S = 2µ4(|a12|2 − 1)2, (33)

which is the form of Connes’ version of Higgs potential.
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3) Eq. (32)is contained in the potential energy density of the continuous-spin formulation
of the Ising model (see for example[33,34]). Notice that the Ising model is just the
2-state Potts model. In general,(31) is contained in the potential energy density of the
continuous-spin formulation of then-state Potts model[31]. Since the set of states of the
Potts model forms an-point set, one then can buildU(1) gauge theory on thisn-point
set.

4. Action functional on n copies of a manifold

Let V be an oriented smooth manifold andM, as the previous sections, an-point set.
ThenV × M is a disconnected manifold consisting ofn copies ofV . Now we construct
theU(1) gauge field theory onV × M. Let g be a complex function onV × M. Just as in
Section 2, it can be written as

g =
∑

i

g(i)pi . (34)

Notice that this timeg(i) is a complex function overVi , theith copy ofV .
The algebra that we use will be the tensor product of the De Rham complex ofV and of

the universal differential algebra of the finite point setM.
Denote the differential onM by df . In other words, The differential d inSections 2 and 3

is replaced by df . Let ds be the usual differential onV , and d the total differential onV ×M.
One then has

d = ds + df . (35)

The nilpotency of d requires that

ds df = −df ds. (36)

Differentiating(41), we have

dg =
∑

i

(ds g(i))pi +
∑

i

g(i) df pi.

Any 1-formα can be written as

α =
∑
i,j

αijpi df pj +
∑

i

αipi (37)

with αij, a complex function onV andαii = 0; αi , a 1-form onVi .
Now we consider a connectionα overV × M, α is a 1-form and skew-adjoint, i.e.,α is

given by(37)andα∗ = −α. α obeys the usual transformation rule,

α′ = uαu∗ + u du∗.

Hereu = ∑
i u(i)pi ∈ A, andu(i) ∈ U(1), the Abelian unitary group onVi . α is thus
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called theU(1) gauge field onV × M. One then finds

dα =
∑
i,j

(ds αij)pi df pj +
∑
i,j,k

(αjk − αik + αij)pi df pj pj df pk

+
∑

i

(ds αi)pi −
∑

i

αi df pi,

α2 =
∑
i,j,k

αijαjkpi df pj pj df pk +
∑
i,j

αij(αi − αj )pi df pj .

Notice thatα2
i = αi ∧ αi = 0.

As in Sections 2 and 3, we introduce

a =
∑
i,j

aijpi df pj =
∑
i,j

(1 + αij)pi df pj .

TheU(1) gauge transformation rule fora is

a′ = uau∗,

i.e.,a′
ij = u(i)aiju(j)∗.

αi obeys the usualU(1) gauge transformation rule,

α′
i = αi + u(i) du(i)∗.

The curvature of the connectionα is given by

Θ = dα + α2.

It can be seen thatΘ transforms in the usual way,Θ ′ = uΘu∗. As a 2-form,Θ can be
written as

Θ =
∑

i

(ds αi)pi +
∑
i,j

(ds + αi − αj )aijpi df pj +
∑
i,j,k

θijkpi df pj pj df pk,

θijk = aijajk − aik. (38)

We see thatΘ has a usual differential degree and a finite-difference degree(α, β) adding
up to 2. Let us begin with the term inΘ of bi-degree(2, 0):

Θ(2,0) =
∑

i

(ds αi)pi, (39)

it is the continuous part of the field strength.
Next, we look at the componentΘ(1,1) of bi-degree(1, 1):

Θ(1,1) =
∑
i,j

(ds + αi − αj )aijpi df pj . (40)

Θ(1,1) corresponds to the interaction betweenV andM. It also obeys the field strength
transformation rule,Θ ′(1,1) = uΘ(1,1)u∗.
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Finally, we have the componentΘ(0,2) of degree(0, 2):

Θ(0,2) =
∑
i,j,k

θijkpi df pj pj df pk. (41)

Θ(0,2) corresponds to the field strength over the finite setM.
Just as inSection 3, we use the formula(13) to deal with the finite-difference degrees,

i.e.,

π(df pi) = i[D, π(pi)].

We also introduce the Hermitian matrixH ,

Hij = aijDij.

We then obtain the action functional overV × M:

S =
∫

V

Ldν.

The Lagrangian density is given by the following formulae:

L = L2 + L1 + L0, (42)

L2 = ‖Θ(2,0)‖2 =
∑

i

|ds αi |2, (43)

L1 = ‖Θ(1,1)‖2 =
∑
i,j

[(ds + αi − αj )Hij][(ds + αj − αi)Hji], (44)

L0 = tr H 4 − 2µ2 tr H 2 + nµ4

=
∑

i,j,k,l

(∑
α

eα
i eα

j eα
k eα

l

)
φiφj φkφl − 2n

n − 1
µ2

(∑
i

φ2
i

)
+ nµ4. (45)

Remark. The termL2 is the usual term describing the Lagrangian for aU(1) × U(1) ×
· · · × U(1) (n terms) connection.Hij (i �= j, i, j = 1, 2, . . . , n) in L1 give a mass to some
of theαi − αj fields.

Example 1. We first consider the simplest case, i.e.,

αi = A, i = 1, 2, . . . , n.

HereA is aU(1) gauge field onV . The physical meaning of the above assumptions is: there
exists unique gauge field, i.e., the Maxwell electromagnetic field over all copies ofV .

The Lagrangian density is given by the following formulae:

L2 = ‖Θ(2,0)‖2 = n|F |2 = n|ds A|2,

L1 = ‖Θ(1,1)‖2 = tr(ds H)2 = n

n − 1

∑
i

(ds φi)
2,

andL0 is the same as the formula(45).
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Notice thatL1 coincides with the kinetic energy density of the continuous-spin formula-
tion of then-state Potts model[31].

Example 2. We consider the case ofn = 3. The Lagrangian density is given by the
following formulae:

the massless term

L2 = |ds α1|2 + |ds α2|2 + |ds α3|2,

the nontrivial mass term

L1 = 2[(ds + α1 − α2)H12][(ds + α2 − α1)H21]

+2[(ds + α1 − α3)H13][(ds + α3 − α1)H31]

+2[(ds + α2 − α3)H23][(ds + α3 − α2)H32],

and the Higgs–Landau polynomial

L0 = 9
8(φ2

1 + φ2
2)2 − 3µ2(φ2

1 + φ2
2) + 3µ4.
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