Connes' spectral triple and $U(1)$ gauge theory on finite sets

Liangzhong $\mathrm{Hu}^{*, 1}$, Adonai S. Sant'Anna
Department of Mathematics, Federal University of Paraná, CP 019081, CEP 81531-990, Curitiba-PR, Brazil

Received 30 July 2001 ; received in revised form 5 November 2001

Abstract

We first apply Connes' noncommutative geometry to a finite point set. The explicit form of the action functional of $U(1)$ gauge field on this n-point set is obtained. We then construct the $U(1)$ gauge theory on a disconnected manifold consisting of n copies of a given manifold. In this case, the explicit action functional of $U(1)$ gauge field is also obtained. © 2002 Elsevier Science B.V. All rights reserved.

MSC: 58B34; 81T13
Subj. Class.: Noncommutative geometry; Quantum field theory
Keywords: Noncommutative geometry; Spectral triple; Gauge theory; Finite set

1. Introduction

Within the framework of Connes' noncommutative geometry [1,2] (for the brief introduction, see also [3-5]), the Higgs field and the symmetry breaking mechanism in the standard model have a remarkable geometrical picture. The Higgs field is a connection, which arises from the geometry of the two-point set [6,7], see also [4,8-15], and references therein. This suggests that the discrete geometry may play an important role in physics. Differential calculus and gauge theory on discrete groups were proposed by Sitarz in [16], see also [17-21]. The differential calculus on arbitrary finite or countable sets was formulated by Dimakis and Müller-Hoissen in [22,23]. Especially, the generalized $U(1)$ gauge theory above a discrete space with n points ($n>2$), was briefly discussed by Cammarata and Coquereaux in [24]. For related developments, see [25-28] and references therein. For the metric properties of a finite set, see [29] and references therein.

[^0]In Connes' noncommutative geometry, all the geometrical data are determined by a spectral triple $(\mathcal{A}, \mathcal{H}, D)$, where \mathcal{A} is an involutive algebra, \mathcal{H} is a Hilbert space with an involutive representation π of \mathcal{A}, and D is a self-adjoint operator acting on \mathcal{H}.

In this paper, we first review the differential calculus on a n-point set [22-24]. We then apply Connes' spectral triple to this formalism to obtain the explicit form of the action functional of $U(1)$ gauge field on the n-point set. Finally, we construct the $U(1)$ gauge theory on a disconnected manifold consisting of n copies of a connected manifold. The explicit action functional in this case is also obtained.

2. Differential calculus on \boldsymbol{n}-point set

In this section, we shall review the differential calculus on n-point set. More detailed account of the construction can be found in [22-24].

Let M be a set of n points $i_{1}, \ldots, i_{n}(n<\infty)$, and \mathcal{A} an involutive algebra of complex functions on M with $(f g)(i)=f(i) g(i)$. Let $p_{i} \in \mathcal{A}$ defined by

$$
\begin{equation*}
p_{i}(j)=\delta_{i j} . \tag{1}
\end{equation*}
$$

Then it follows that

$$
\begin{equation*}
p^{*}=p, \quad p_{i} p_{j}=\delta_{i j} p_{j}, \quad \sum_{i} p_{i}=\mathbf{1} \tag{2}
\end{equation*}
$$

where $\mathbf{1}(i)=1$. In other words, p_{i} is a projector in \mathcal{A}. Each $f \in \mathcal{A}$ can be written as

$$
\begin{equation*}
f=\sum_{i} f(i) p_{i} \tag{3}
\end{equation*}
$$

where $f(i) \in \mathbf{C}$ is a complex number. The algebra \mathcal{A} can be extended to a universal differential algebra $\Omega(\mathcal{A})=\oplus_{r=0}^{\infty} \Omega^{r}(\mathcal{A})\left(\right.$ where $\left.\Omega^{0}(\mathcal{A})=\mathcal{A}\right)$ via the action of a linear operator d: $\Omega^{r}(\mathcal{A}) \rightarrow \Omega^{r+1}(\mathcal{A})$ satisfying

$$
\mathrm{d} \mathbf{1}=0, \quad \mathrm{~d}^{2}=0, \quad \mathrm{~d}\left(\omega_{r} \omega^{\prime}\right)=\left(\mathrm{d} \omega_{r}\right) \omega^{\prime}+(-1)^{r} \omega_{r} \mathrm{~d} \omega^{\prime}
$$

where $\omega_{r} \in \Omega^{r}(\mathcal{A})$. The spaces $\Omega^{r}(\mathcal{A})$ of r-forms are \mathcal{A}-bimodules. $\mathbf{1}$ is taken to be the unit in $\Omega(\mathcal{A})$. From the above properties, the set of functions p_{i} satisfy the following relations:

$$
\begin{align*}
& p_{i} \mathrm{~d} p_{j}=-\left(\mathrm{d} p_{i}\right) p_{j}+\delta_{i j} \mathrm{~d} p_{i}, \tag{4}\\
& \sum_{i} \mathrm{~d} p_{i}=0 . \tag{5}
\end{align*}
$$

This means that the differential calculus over n-point set M associates with it $n-1$ linear independent differentials. There is a natural geometrical representation associated with M. Let the projectors $p_{i}(i=1, \ldots, n)$ be the orthonormal base vectors in the Euclidean space \mathbf{R}^{n}. Then M forms the vertices of the ($n-1$)-dimensional hypertetrahedron embedded in \mathbf{R}^{n}. $\Omega(\mathcal{A})$ is made an involutive algebra by

$$
\begin{equation*}
\left(a_{0} \mathrm{~d} a_{1} \cdots \mathrm{~d} a_{n}\right)^{*}=\mathrm{d} a_{n}^{*} \cdots \mathrm{~d} a_{1}^{*} a_{0}^{*} \tag{6}
\end{equation*}
$$

where $a_{0}, a_{1}, \ldots, a_{n} \in \mathcal{A}$. Thus we have $\omega^{* *}=\omega$ and $(\omega \eta)^{*}=\eta^{*} \omega^{*}$ for $\omega, \eta \in \Omega(\mathcal{A})$, as required. Notice that if $\alpha \in \Omega^{1}$, then $(\mathrm{d} \alpha)^{*}=-\mathrm{d} \alpha^{*}$.

The universal first-order differential calculus Ω^{1} is generated by $p_{i} \mathrm{~d} p_{j}(i \neq j), i$, $j=1,2, \ldots, n$. Notice that $p_{i} \mathrm{~d} p_{i}$ is the linear combinations of $p_{i} \mathrm{~d} p_{j}(i \neq j)$.
Ω^{1} can be defined as the kernel in the algebra $\mathcal{A} \otimes \mathcal{A}$ of the multiplication map. The dimension of Ω^{1} is, therefore, $\operatorname{dim}(A \otimes A)-\operatorname{dim} A=n(n-1)$.

Similarly, the compositions of $p_{i} \mathrm{~d} p_{j}(i \neq j), i, j=1,2, \ldots, n$, generate the higher order universal differential calculus on M. For example, the universal second-order differential calculus Ω^{2} is generated by $p_{i} \mathrm{~d} p_{j} p_{j} \mathrm{~d} p_{k}(i \neq j, j \neq k), i, j, k=1,2, \ldots, n$.

Notice that it is much simpler to say that Ω^{2} is generated by $p_{i} \mathrm{~d} p_{j} \mathrm{~d} p_{k}(i \neq j, j \neq k$ and $i, j, k=1,2, \ldots, n)$. But the form $p_{i} \mathrm{~d} p_{j} p_{j} \mathrm{~d} p_{k}$ is more convenient for us to apply the spectral triple to $\Omega(\mathcal{A})$.

Since $\Omega^{p}=\Omega^{1} \otimes_{\mathcal{A}} \cdots \otimes_{\mathcal{A}} \Omega^{1}$ (p terms), therefore the dimension of Ω^{p} is $n^{p}(n-1)^{p} / n^{p-1}=n(n-1)^{p}$.

A simple calculation shows that

$$
\begin{equation*}
\mathrm{d} p_{i}=\sum_{j}\left(p_{j} \mathrm{~d} p_{i}-p_{i} \mathrm{~d} p_{j}\right) \tag{7}
\end{equation*}
$$

Furthermore,

$$
\begin{equation*}
\mathrm{d} p_{i} \mathrm{~d} p_{j}=\sum_{k}\left(p_{k} \mathrm{~d} p_{i} p_{i} \mathrm{~d} p_{j}-p_{i} \mathrm{~d} p_{k} p_{k} \mathrm{~d} p_{j}+p_{i} \mathrm{~d} p_{j} p_{j} \mathrm{~d} p_{k}\right) \tag{8}
\end{equation*}
$$

Any 1-form α can be written as $\alpha=\sum_{i, j} \alpha_{i j} p_{i} \mathrm{~d} p_{j}$ with $\alpha_{i j} \in \mathbf{C}$ and $\alpha_{i i}=0$. Especially, $\alpha^{*}=-\sum_{i, j} \bar{\alpha}_{j, i} p_{i} \mathrm{~d} p_{j}$. Then $\alpha^{*}=-\alpha$ if and only if $\bar{\alpha}_{j i}=\alpha_{i j}$.

One can find

$$
\begin{equation*}
\mathrm{d} \alpha=\sum_{i, j, k}\left(\alpha_{j k}-\alpha_{i k}+\alpha_{i j}\right) p_{i} \mathrm{~d} p_{j} p_{j} \mathrm{~d} p_{k} \tag{9}
\end{equation*}
$$

In this paper, we only consider the $U(1)$ gauge field α on M, i.e., α is a connection on M, α is a 1-form, and skew-adjoint, $\alpha^{*}=-\alpha$, i.e., $\bar{\alpha}_{j i}=\alpha_{i j}$. α obeys the usual transformation rule,

$$
\alpha^{\prime}=u \alpha u^{*}+u \mathrm{~d} u^{*}
$$

Here $u=\sum_{i} u(i) p_{i} \in \mathcal{A}$, and $u(i) \in U(1)$, the Abelian unitary group. In order to make the formulae concise, one introduces

$$
\begin{equation*}
a=\sum_{i, j} a_{i j} p_{i} \mathrm{~d} p_{j}=\sum_{i, j}\left(1+\alpha_{i j}\right) p_{i} \mathrm{~d} p_{j} \tag{10}
\end{equation*}
$$

with $a_{i i}=1$. One then has

$$
\begin{equation*}
a^{\prime}=u a u^{*}, \quad a_{i j}^{\prime}=u(i) a_{i j} u(j)^{*} \tag{11}
\end{equation*}
$$

The curvature of the connection α is given by

$$
\theta=\mathrm{d} \alpha+\alpha^{2}
$$

and transforms in the usual way, $\theta^{\prime}=u \theta u^{*}$. Notice that $(\mathrm{d} \alpha)^{*}=-\mathrm{d} \alpha^{*}=\mathrm{d} \alpha$ and $\left(\alpha^{2}\right)^{*}=\alpha^{2}$, therefore one has $\theta=\theta^{*}$. As a 2-form, θ can be written as

$$
\begin{equation*}
\theta=\sum_{i, j, k} \theta_{i j k} p_{i} \mathrm{~d} p_{j} p_{j} \mathrm{~d} p_{k}, \quad \theta_{i j k}=a_{i j} a_{j k}-a_{i k} \tag{12}
\end{equation*}
$$

3. From spectral triple to action functional over M

The availability of the spectral triple allows us to project from the algebra of universal forms $\Omega(\mathcal{A})$ to a more useful graded differential algebra.

We now construct the spectral triple $(\mathcal{A}, \mathcal{H}, D)$ over the n-point set M [30]. In this case, \mathcal{A} is the algebra on M defined in the last section. Without loss of generality, \mathcal{H} is taken to be a n-dimensional linear space over \mathbf{C}, i.e., \mathcal{H} is just the direct sum $\mathcal{H}=\oplus_{i=1}^{n} \mathcal{H}_{i}, \mathcal{H}_{i}=\mathbf{C}$. The action of \mathcal{A} on \mathcal{H} is given by

$$
\pi(f)=\left(\begin{array}{cccc}
f(1) & 0 & \ldots & 0 \\
0 & f(2) & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots \\
0 & 0 & \ldots & f(n)
\end{array}\right)
$$

where $f \in \mathcal{A}$. Then D is the Hermitian $n \times n$ matrix with elements $D_{i j}=\bar{D}_{j i}$, and $D_{i j}$ is a linear mapping from \mathcal{H}_{j} to \mathcal{H}_{i}. The following equality defines an involutive representation of $\Omega(\mathcal{A})$ in \mathcal{H},

$$
\begin{equation*}
\pi\left(a_{0} \mathrm{~d} a_{1} \cdots \mathrm{~d} a_{n}\right)=i^{n} \pi\left(a_{0}\right)\left[D, \pi\left(a_{1}\right)\right] \cdots\left[D, \pi\left(a_{n}\right)\right] \tag{13}
\end{equation*}
$$

where $a_{0}, a_{1}, \ldots, a_{n} \in \mathcal{A}$. To ensure the differential d satisfies

$$
\begin{equation*}
\mathrm{d}^{2}=0 \tag{14}
\end{equation*}
$$

one has to impose the following condition on D,

$$
\begin{equation*}
D^{2}=\mu^{2} I, \tag{15}
\end{equation*}
$$

where μ is a real constant and I the $n \times n$ unit matrix.
We now take $D_{i j} \neq 0(i \neq j)$. Then the representation $\pi: \Omega(\mathcal{A}) \rightarrow \mathcal{L}(\mathcal{H})$ is injective on $\Omega(\mathcal{A})$. One can prove that π homomorphism is a differential one, i.e., $\pi(\Omega(\mathcal{A}))$ is well defined.

In Connes' terminology [2], our spectral triple $(\mathcal{A}, \mathcal{H}, D)$ is odd (except the case of $n=2$).

The projector p_{i} can be expressed as the $n \times n$ matrix,

$$
\begin{equation*}
\left(\pi\left(p_{i}\right)\right)_{\alpha \beta}=\delta_{\alpha i} \delta_{\beta i} \tag{16}
\end{equation*}
$$

Notice that the diagonal elements of D commute exactly with the action of \mathcal{A}. For the sake of convenience, we can ignore the diagonal elements of D, i.e.,

$$
\begin{equation*}
D_{i i}=0 . \tag{17}
\end{equation*}
$$

From (13) and (16), one has

$$
\begin{align*}
& \left(\pi\left(p_{i} \mathrm{~d} p_{j}\right)\right)_{\alpha \beta}=i \delta_{\alpha i} \delta_{\beta j} D_{i j} \tag{18}\\
& \left(\pi\left(p_{i} \mathrm{~d} p_{j} p_{j} \mathrm{~d} p_{k} p_{k} \mathrm{~d} p_{l} p_{l} \mathrm{~d} p_{r}\right)\right)_{\alpha \beta}=\delta_{\alpha i} \delta_{\beta r} D_{i j} D_{j k} D_{k l} D_{l r} \tag{19}
\end{align*}
$$

One can define an inner product $\langle\mid\rangle$ in $\pi(\Omega(\mathcal{A}))$ by setting

$$
\langle\alpha \mid \beta\rangle=\operatorname{tr}\left(\alpha^{*} \beta\right)
$$

Then the action functional of the curvature θ is

$$
\begin{equation*}
S=\|\pi(\theta)\|^{2}=\langle\pi(\theta) \mid \pi(\theta)\rangle=\operatorname{tr}(\pi(\theta))^{2} \tag{20}
\end{equation*}
$$

From (12), (19) and (20), we have

$$
\begin{equation*}
S=\sum_{i, j, k, l} \theta_{i j k} \theta_{k l i} D_{i j} D_{j k} D_{k l} D_{l i} \tag{21}
\end{equation*}
$$

Denote

$$
\begin{equation*}
a_{i j} D_{i j}=H_{i j} \tag{22}
\end{equation*}
$$

where $a_{i j}$ is defined in (10). Then $H=\left(H_{i j}\right)$ is a Hermitian matrix with

$$
\begin{equation*}
H_{i i}=0 . \tag{23}
\end{equation*}
$$

From (12), (15), (21), -(23), one thus has

$$
\begin{equation*}
S=\operatorname{tr} H^{4}-2 \mu^{2} \operatorname{tr} H^{2}+n \mu^{4} \tag{24}
\end{equation*}
$$

From (23), the eigenvalues $\lambda_{i}(i=1,2, \ldots, n)$ of H satisfy:

$$
\begin{equation*}
\sum_{i=1}^{n} \lambda_{i}=0 \tag{25}
\end{equation*}
$$

Eq. (24) can be written as the following:

$$
\begin{equation*}
S=\sum_{i=1}^{n} \lambda_{i}^{4}-2 \mu^{2} \sum_{i=1}^{n} \lambda_{i}^{2}+n \mu^{4} \tag{26}
\end{equation*}
$$

From the quadric expression, (26) can take the form

$$
S=C_{2}^{i j k l} \sum_{i, j, k, l=1}^{n-1} \varphi_{i} \varphi_{j} \varphi_{k} \varphi_{l}-C_{1} \sum_{i=1}^{n-1} \varphi_{i}^{2}+n \mu^{4}
$$

where $\left(\varphi_{1}, \ldots, \varphi_{n-1}\right)$ is a vector in $(n-1)$-dimensional Euclidean space $\mathbf{R}^{n-1}, C_{2}^{i j k l}$ and C_{1} are real constants.

For the sake of convenience, we identify \mathbf{R}^{n-1} with a subspace embedded in the n dimensional geometrical representation space of M introduced in Section 2 from now on. In the $(n-1)$-dimensional rectangular coordinate system, the reference point is taken to
be the center of the $(n-1)$-dimensional hypertetrahedron. M can then be represented by a set of n vectors in $\mathbf{R}^{n-1}: e_{i}^{\alpha}(\alpha=1, \ldots, n ; i=1, \ldots, n-1)$, such that

$$
\begin{equation*}
\sum_{i} e_{i}^{\alpha} e_{i}^{\beta}=\frac{n}{n-1} \delta^{\alpha \beta}-\frac{1}{n-1} \tag{27}
\end{equation*}
$$

In (27) we have chosen the normalization of the vectors to be unity for convenience. This set of e 's satisfy

$$
\begin{align*}
& \sum_{\alpha} e_{i}^{\alpha}=0, \tag{28}\\
& \sum_{\alpha} e_{i}^{\alpha} e_{j}^{\alpha}=\frac{n}{n-1} \delta_{i j} . \tag{29}
\end{align*}
$$

It should be mentioned that the properties of M are encoded in those of the set of spin states in the Potts model [31]. The reason will be discussed at the end of this section.

Using (28), the eigenvalues of H are

$$
\begin{equation*}
\lambda_{\alpha}=\sum_{i=1}^{n-1} \phi_{i} e_{i}^{\alpha}, \quad \alpha=1, \ldots, n \tag{30}
\end{equation*}
$$

Here each $\phi_{i}(i=1, \ldots, n-1)$ is a real parameter. We call $\boldsymbol{\Phi}=\left(\phi_{1}, \ldots, \phi_{n-1}\right)$ the order parameter field in \mathbf{R}^{n-1}. Finally, from (24), (29) and (30), we obtain the explicit form of S over the n-point set M :

$$
\begin{equation*}
S=\sum_{i, j, k, l}\left(\sum_{\alpha} e_{i}^{\alpha} e_{j}^{\alpha} e_{k}^{\alpha} e_{l}^{\alpha}\right) \phi_{i} \phi_{j} \phi_{k} \phi_{l}-\frac{2 n}{n-1} \mu^{2}\left(\sum_{i} \phi_{i}^{2}\right)+n \mu^{4} . \tag{31}
\end{equation*}
$$

Remark.

1) The gauge field is a $n \times n$ matrix. Meanwhile, the number of the reduced field variables ϕ_{i} is $n-1$. Notice also that $\phi_{i}(i=1,2, \ldots, n-1)$ are real numbers.
2) When $n=2$, (31) changes into

$$
\begin{equation*}
S=2\left(\phi^{2}-\mu^{2}\right)^{2} \tag{32}
\end{equation*}
$$

This is just the Hamiltonian density of the Landau phenomenological theory of phase transitions below the critical temperature [32]. Here ϕ is known as the order parameter. Notice that the size of the coefficients of ϕ^{2} and ϕ^{4} does not affect the values of critical exponents of phase transitions, but it may affect the mass value of the Higgs field when (32) is considered as the Higgs potential: From (15), (22) and (30), we have $\phi^{2}=$ $\mu^{2}\left|a_{12}\right|^{2}$. One then has

$$
\begin{equation*}
S=2 \mu^{4}\left(\left|a_{12}\right|^{2}-1\right)^{2} \tag{33}
\end{equation*}
$$

which is the form of Connes' version of Higgs potential.
3) Eq. (32) is contained in the potential energy density of the continuous-spin formulation of the Ising model (see for example [33,34]). Notice that the Ising model is just the 2 -state Potts model. In general, (31) is contained in the potential energy density of the continuous-spin formulation of the n-state Potts model [31]. Since the set of states of the Potts model forms a n-point set, one then can build $U(1)$ gauge theory on this n-point set.

4. Action functional on \boldsymbol{n} copies of a manifold

Let V be an oriented smooth manifold and M, as the previous sections, a n-point set. Then $V \times M$ is a disconnected manifold consisting of n copies of V. Now we construct the $U(1)$ gauge field theory on $V \times M$. Let g be a complex function on $V \times M$. Just as in Section 2, it can be written as

$$
\begin{equation*}
g=\sum_{i} g(i) p_{i} \tag{34}
\end{equation*}
$$

Notice that this time $g(i)$ is a complex function over V_{i}, the i th copy of V.
The algebra that we use will be the tensor product of the De Rham complex of V and of the universal differential algebra of the finite point set M.

Denote the differential on M by d_{f}. In other words, The differential d in Sections 2 and 3 is replaced by d_{f}. Let d_{s} be the usual differential on V, and d the total differential on $V \times M$. One then has

$$
\begin{equation*}
\mathrm{d}=\mathrm{d}_{\mathrm{s}}+\mathrm{d}_{\mathrm{f}} \tag{35}
\end{equation*}
$$

The nilpotency of d requires that

$$
\begin{equation*}
\mathrm{d}_{\mathrm{s}} \mathrm{~d}_{\mathrm{f}}=-\mathrm{d}_{\mathrm{f}} \mathrm{~d}_{\mathrm{s}} \tag{36}
\end{equation*}
$$

Differentiating (41), we have

$$
\mathrm{d} g=\sum_{i}\left(\mathrm{~d}_{\mathrm{s}} g(i)\right) p_{i}+\sum_{i} g(i) \mathrm{d}_{\mathrm{f}} p_{i} .
$$

Any 1-form α can be written as

$$
\begin{equation*}
\alpha=\sum_{i, j} \alpha_{i j} p_{i} \mathrm{~d}_{\mathrm{f}} p_{j}+\sum_{i} \alpha_{i} p_{i} \tag{37}
\end{equation*}
$$

with $\alpha_{i j}$, a complex function on V and $\alpha_{i i}=0 ; \alpha_{i}$, a 1-form on V_{i}.
Now we consider a connection α over $V \times M, \alpha$ is a 1 -form and skew-adjoint, i.e., α is given by (37) and $\alpha^{*}=-\alpha$. α obeys the usual transformation rule,

$$
\alpha^{\prime}=u \alpha u^{*}+u \mathrm{~d} u^{*} .
$$

Here $u=\sum_{i} u(i) p_{i} \in \mathcal{A}$, and $u(i) \in U(1)$, the Abelian unitary group on $V_{i} . \alpha$ is thus
called the $U(1)$ gauge field on $V \times M$. One then finds

$$
\begin{aligned}
\mathrm{d} \alpha= & \sum_{i, j}\left(\mathrm{~d}_{\mathrm{s}} \alpha_{i j}\right) p_{i} \mathrm{~d}_{\mathrm{f}} p_{j}+\sum_{i, j, k}\left(\alpha_{j k}-\alpha_{i k}+\alpha_{i j}\right) p_{i} \mathrm{~d}_{\mathrm{f}} p_{j} p_{j} \mathrm{~d}_{\mathrm{f}} p_{k} \\
& +\sum_{i}\left(\mathrm{~d}_{\mathrm{s}} \alpha_{i}\right) p_{i}-\sum_{i} \alpha_{i} \mathrm{~d}_{\mathrm{f}} p_{i}, \\
\alpha^{2}= & \sum_{i, j, k} \alpha_{i j} \alpha_{j k} p_{i} \mathrm{~d}_{\mathrm{f}} p_{j} p_{j} \mathrm{~d}_{\mathrm{f}} p_{k}+\sum_{i, j} \alpha_{i j}\left(\alpha_{i}-\alpha_{j}\right) p_{i} \mathrm{~d}_{\mathrm{f}} p_{j} .
\end{aligned}
$$

Notice that $\alpha_{i}^{2}=\alpha_{i} \wedge \alpha_{i}=0$.
As in Sections 2 and 3, we introduce

$$
a=\sum_{i, j} a_{i j} p_{i} \mathrm{~d}_{\mathrm{f}} p_{j}=\sum_{i, j}\left(1+\alpha_{i j}\right) p_{i} \mathrm{~d}_{\mathrm{f}} p_{j}
$$

The $U(1)$ gauge transformation rule for a is

$$
a^{\prime}=u a u^{*},
$$

i.e., $a_{i j}^{\prime}=u(i) a_{i j} u(j)^{*}$.
α_{i} obeys the usual $U(1)$ gauge transformation rule,

$$
\alpha_{i}^{\prime}=\alpha_{i}+u(i) \mathrm{d} u(i)^{*}
$$

The curvature of the connection α is given by

$$
\Theta=\mathrm{d} \alpha+\alpha^{2}
$$

It can be seen that Θ transforms in the usual way, $\Theta^{\prime}=u \Theta u^{*}$. As a 2-form, Θ can be written as

$$
\begin{align*}
& \Theta=\sum_{i}\left(\mathrm{~d}_{\mathrm{s}} \alpha_{i}\right) p_{i}+\sum_{i, j}\left(\mathrm{~d}_{\mathrm{s}}+\alpha_{i}-\alpha_{j}\right) a_{i j} p_{i} \mathrm{~d}_{\mathrm{f}} p_{j}+\sum_{i, j, k} \theta_{i j k} p_{i} \mathrm{~d}_{\mathrm{f}} p_{j} p_{j} \mathrm{~d}_{\mathrm{f}} p_{k}, \\
& \theta_{i j k}=a_{i j} a_{j k}-a_{i k} \tag{38}
\end{align*}
$$

We see that Θ has a usual differential degree and a finite-difference degree (α, β) adding up to 2 . Let us begin with the term in Θ of bi-degree $(2,0)$:

$$
\begin{equation*}
\Theta^{(2,0)}=\sum_{i}\left(\mathrm{~d}_{\mathrm{s}} \alpha_{i}\right) p_{i} \tag{39}
\end{equation*}
$$

it is the continuous part of the field strength.
Next, we look at the component $\Theta^{(1,1)}$ of bi-degree (1,1):

$$
\begin{equation*}
\Theta^{(1,1)}=\sum_{i, j}\left(\mathrm{~d}_{\mathrm{s}}+\alpha_{i}-\alpha_{j}\right) a_{i j} p_{i} \mathrm{~d}_{\mathrm{f}} p_{j} \tag{40}
\end{equation*}
$$

$\Theta^{(1,1)}$ corresponds to the interaction between V and M. It also obeys the field strength transformation rule, $\Theta^{\prime(1,1)}=u \Theta^{(1,1)} u^{*}$.

Finally, we have the component $\Theta^{(0,2)}$ of degree $(0,2)$:

$$
\begin{equation*}
\Theta^{(0,2)}=\sum_{i, j, k} \theta_{i j k} p_{i} \mathrm{~d}_{\mathrm{f}} p_{j} p_{j} \mathrm{~d}_{\mathrm{f}} p_{k} \tag{41}
\end{equation*}
$$

$\Theta^{(0,2)}$ corresponds to the field strength over the finite set M.
Just as in Section 3, we use the formula (13) to deal with the finite-difference degrees, i.e.,

$$
\pi\left(\mathrm{d}_{\mathrm{f}} p_{i}\right)=i\left[D, \pi\left(p_{i}\right)\right] .
$$

We also introduce the Hermitian matrix H,

$$
H_{i j}=a_{i j} D_{i j}
$$

We then obtain the action functional over $V \times M$:

$$
S=\int_{V} \mathcal{L} \mathrm{~d} v
$$

The Lagrangian density is given by the following formulae:

$$
\begin{align*}
\mathcal{L} & =\mathcal{L}_{2}+\mathcal{L}_{1}+\mathcal{L}_{0} \tag{42}\\
\mathcal{L}_{2} & =\left\|\Theta^{(2,0)}\right\|^{2}=\sum_{i}\left|\mathrm{~d}_{\mathrm{s}} \alpha_{i}\right|^{2}, \tag{43}\\
\mathcal{L}_{1} & =\left\|\Theta^{(1,1)}\right\|^{2}=\sum_{i, j}\left[\left(\mathrm{~d}_{\mathrm{s}}+\alpha_{i}-\alpha_{j}\right) H_{i j}\right]\left[\left(\mathrm{d}_{\mathrm{s}}+\alpha_{j}-\alpha_{i}\right) H_{j i}\right], \tag{44}\\
\mathcal{L}_{0} & =\operatorname{tr} H^{4}-2 \mu^{2} \operatorname{tr} H^{2}+n \mu^{4} \\
& =\sum_{i, j, k, l}\left(\sum_{\alpha} e_{i}^{\alpha} e_{j}^{\alpha} e_{k}^{\alpha} e_{l}^{\alpha}\right) \phi_{i} \phi_{j} \phi_{k} \phi_{l}-\frac{2 n}{n-1} \mu^{2}\left(\sum_{i} \phi_{i}^{2}\right)+n \mu^{4} . \tag{45}
\end{align*}
$$

Remark. The term \mathcal{L}_{2} is the usual term describing the Lagrangian for a $U(1) \times U(1) \times$ $\cdots \times U(1)(n$ terms $)$ connection. $H_{i j}(i \neq j, i, j=1,2, \ldots, n)$ in \mathcal{L}_{1} give a mass to some of the $\alpha_{i}-\alpha_{j}$ fields.

Example 1. We first consider the simplest case, i.e.,

$$
\alpha_{i}=A, \quad i=1,2, \ldots, n
$$

Here A is a $U(1)$ gauge field on V. The physical meaning of the above assumptions is: there exists unique gauge field, i.e., the Maxwell electromagnetic field over all copies of V.

The Lagrangian density is given by the following formulae:

$$
\begin{aligned}
& \mathcal{L}_{2}=\left\|\Theta^{(2,0)}\right\|^{2}=n|F|^{2}=n\left|\mathrm{~d}_{\mathrm{s}} A\right|^{2} \\
& \mathcal{L}_{1}=\left\|\Theta^{(1,1)}\right\|^{2}=\operatorname{tr}\left(\mathrm{d}_{\mathrm{s}} H\right)^{2}=\frac{n}{n-1} \sum_{i}\left(\mathrm{~d}_{\mathrm{s}} \phi_{i}\right)^{2}
\end{aligned}
$$

and \mathcal{L}_{0} is the same as the formula (45).

Notice that \mathcal{L}_{1} coincides with the kinetic energy density of the continuous-spin formulation of the n-state Potts model [31].

Example 2. We consider the case of $n=3$. The Lagrangian density is given by the following formulae:
the massless term

$$
\mathcal{L}_{2}=\left|\mathrm{d}_{\mathrm{s}} \alpha_{1}\right|^{2}+\left|\mathrm{d}_{\mathrm{s}} \alpha_{2}\right|^{2}+\left|\mathrm{d}_{\mathrm{s}} \alpha_{3}\right|^{2},
$$

the nontrivial mass term

$$
\begin{aligned}
\mathcal{L}_{1}= & 2\left[\left(\mathrm{~d}_{\mathrm{s}}+\alpha_{1}-\alpha_{2}\right) H_{12}\right]\left[\left(\mathrm{d}_{\mathrm{s}}+\alpha_{2}-\alpha_{1}\right) H_{21}\right] \\
& +2\left[\left(\mathrm{~d}_{\mathrm{s}}+\alpha_{1}-\alpha_{3}\right) H_{13}\right]\left[\left(\mathrm{d}_{\mathrm{s}}+\alpha_{3}-\alpha_{1}\right) H_{31}\right] \\
& +2\left[\left(\mathrm{~d}_{\mathrm{s}}+\alpha_{2}-\alpha_{3}\right) H_{23}\right]\left[\left(\mathrm{d}_{\mathrm{s}}+\alpha_{3}-\alpha_{2}\right) H_{32}\right],
\end{aligned}
$$

and the Higgs-Landau polynomial

$$
\mathcal{L}_{0}=\frac{9}{8}\left(\phi_{1}^{2}+\phi_{2}^{2}\right)^{2}-3 \mu^{2}\left(\phi_{1}^{2}+\phi_{2}^{2}\right)+3 \mu^{4} .
$$

Acknowledgements

We thank the referee for the important criticism, valuable comments and helpful suggestions. One of us (LH) would like to thank Prof. M.-L. Ge for helpful discussions. LH also acknowledges the financial support by CNPq (Brazilian Government Agency) and UFPR (Federal University of Paraná).

References

[1] A. Connes, Noncommutative differential geometry, Inst. Hautes Études Sci. Publ. Math. 62 (1985) 257-360.
[2] A. Connes, Noncommutative Geometry, Academic Press, New York, 1994.
[3] R. Coquereaux, Noncommutative geometry and theoretical physics, J. Geom. Phys. 6 (1989) 425-490.
[4] J.C. Varilly, J.M. Gracia-Bondia, Connes' noncommutative differential geometry and the standard model, J. Geom. Phys. 12 (1993) 223-301.
[5] J. Madore, An Introduction to Noncommutative Differential Geometry and Its Physical Applications, London Mathematical Society Lecture Note Series, Vol. 206, Cambridge University Press, Cambridge, 1995.
[6] A. Connes, Essay on physics and non-commutative geometry, in: D. Quillen, G. Segal, S. Tsou (Eds.), The Interface of Mathematics and Particle Physics, Oxford University Press, Oxford, 1990, pp. 9-48.
[7] A. Connes, J. Lott, Particle models and noncommutative geometry, Nucl. Phys. Proc. Suppl. 18 (1990) 29-47.
[8] R. Coquereaux, G. Esposito-Farese, G. Vaillant, Higgs fields as Yang-Mills fields and discrete symmetries, Nucl. Phys. B 353 (1991) 689-706.
[9] D. Kastler, A detailed account of Alain Connes' version of the standard model in non-commutative geometry, Marseille Preprints, CPT-91/P.2610, CPT-92/P. 2894.
[10] A.H. Chamseddine, G. Felder, J. Fröhlich, Grand unification in non-commutative geometry, Nucl. Phys. B 395 (1993) 672-700.
[11] A. Connes, Noncommutative geometry and reality, J. Math. Phys. 36 (1995) 6194-6231.
[12] A. Connes, Gravity coupled with matter and foundation of noncommutative geometry, Commun. Math. Phys. 182 (1996) 155-176.
[13] A.H. Chamseddine, A. Connes, A universal action formula, Phys. Rev. Lett. 77 (1996) 4868.
[14] A.H. Chamseddine, A. Connes, The spectral action principle, Commun. Math. Phys. 186 (1997) 731-750.
[15] C.P. Martin, J.M. Gracia-Bondia, J.C. Varilly, The standard model as a noncommutative geometry: the low energy regime, Phys. Rep. 294 (1998) 363-406.
[16] A. Sitarz, Noncommutative geometry and gauge theory on discrete groups, Preprint TPJU-7/92, 1992;
A. Sitarz, Noncommutative geometry and gauge theory on discrete groups, J. Geom. Phys. 15 (1995) 123.
[17] A. Sitarz, Noncommutative geometry and the Ising model. hep-th/9212001.
[18] H.-G. Ding, H.-Y. Guo, J.-M. Li, K. Wu, Higgs as gauge fields on discrete groups, Commun. Theoret. Phys. 21 (1994) 85-94.
[19] K. Bresser, A. Dimakis, F. Müller-Hoissen, A. Sitarz, Noncommutative geometry of finite groups, J. Phys. A 29 (1996) 2705-2736.
[20] S. Majid, Noncommutative differentials and Yang-Mills on permutation groups S_{N}. math.QA/0105253.
[21] J. Dai, X.-C. Song, Noncommutative differential geometry and classical field theory on finite groups. hep-th/0110179.
[22] A. Dimakis, F. Müller-Hoissen, Differential calculus and gauge theory on finite sets, J. Phys. A 27 (1994) 3159-3178.
[23] A. Dimakis, F. Müller-Hoissen, Discrete differential calculus: graphs, topologies and gauge theory, J. Math. Phys. 35 (1994) 6703-6735.
[24] G. Cammarata, R. Coquereaux, Comments about Higgs fields, noncommutative geometry and the standard model, Lecture Notes in Physics, Vol. 469, Springer, Berlin, pp. 27-50. hep-th/9505192.
[25] R.D. Sorkin, Finitary substitute for continuous topology, Int. J. Theoret. Phys. 30 (1991) 923-947.
[26] A.P. Balachandran, G. Bimonte, E. Ercolessi, G. Landi, F. Lizzi, G. Sparano, P. Teotonio-Sobrinho, Finite quantum physics and noncommutative geometry, Nucl. Phys. Proc. Suppl. 37C (1995) 20-45.
[27] A. Dimakis, F. Müller-Hoissen, Discrete Riemannian geometry, J. Math. Phys. 40 (1999) 1518-1548.
[28] S. Majid, Conceptual issues for noncommutative gravity on algebras and finite sets, Int. J. Mod. Phys. B 14 (2000) 2427-2450.
[29] B. Iochum, T. Krajewski, P. Martinetti, Distances in finite spaces from noncommutative geometry, J. Geom. Phys. 37 (2001) 100-125.
[30] L. $\mathrm{Hu}, U(1)$ gauge theory over discrete space-time and phase transitions. hep-th/0001148.
[31] R.K.P. Zia, D. Wallace, Critical behaviour of the continuous n-component Potts model, J. Phys. A 8 (1975) 1495-1507.
[32] L.D. Landau, Phys. Zurn. Sowjetunion 11 (1937) 26.
[33] J.J. Binney, N.J. Dowrick, A.J. Fisher, M.E.J. Newman, The Theory of Critical Phenomena-An Introduction to the Renormalization Group, Clarendon Press, Oxford, 1992.
[34] Y.M. Ivancheko, A.A. Lisyansky, Physics of Critical Fluctuations, Springer, New York, 1995.

[^0]: * Corresponding author.

 E-mail address: hu @ mat.ufpr.br (L. Hu).
 ${ }^{1}$ On leave from Institute of Mathematics, Peking University, China.

